Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

В современных электромеханических преобразователях обнаруживаются потери энергии в магнитном, электрическом и механическом режимах, в результате возникают проблемы с выделением тепла, увеличением шума и вибрации. Это связано с низкой эффективностью перемещения элементов, перемагничиванием магнитного поля сердечника якоря электродвигателя или скачком нагрузок. Но возможно ли уменьшить эти «утечки» и таким образом улучшить коэффициент полезного действия, и если да, как это сделать? Эту тему мы рассмотрим в данной публикации.

Современные методы увеличения эффективности работы асинхронных двигателей

Существует общепринятая классификация электрических машин на синхронные, у которых частота вращения ротора совпадает с частотой магнитного поля, и на асинхронные, где магнитное поле вращается с более высокой скоростью, чем ротор.

Электродвигатели последнего типа на сегодняшний день являются наиболее распространенными: около 90% всех двигателей, используемых в мире, являются асинхронными. Они применяются во многих отраслях промышленности, сельского хозяйства и сферы ЖКХ.

Это объясняется тем, что они просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронных электродвигателей значительно выше, чем синхронных.

Тем не менее, у такой техники есть и существенные недостатки. Один из них – это высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и пониженной производительности в периоды пониженной нагрузки), невозможность точной регулировки скорости работы и так далее. В результате все эти факторы приводят к значительному снижению эффективности работы.

Чтобы справиться с этими проблемами, специалисты используют различные методы, направленные на повышение КПД асинхронных двигателей. Одним из них является использование частотных преобразователей, которые уменьшают пусковой ток, и, следовательно, пусковую мощность двигателя. Кроме этого, применяются специальные системы управления моментом, которые позволяют точно регулировать мощность двигателя и его скорость в зависимости от потребностей. Это повышает производительность механизма и уменьшает избыточную механическую нагрузку. Также существуют специальные схемы управления током, которые минимизируют потери энергии в механизме и увеличивают его КПД. Все эти методы позволяют достичь более эффективной работы асинхронных двигателей.

Оптимизируем работу промышленного оборудования с помощью контроллеров-оптимизаторов. Эти устройства способны повысить КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в различных сферах: промышленности, сельском хозяйстве и ЖКХ.

Кроме этого, контроллеры-оптимизаторы могут предотвратить перегрузки кронштейнов при запуске мешалок, нейтрализовать гидроудары в трубопроводах, а также обеспечить плавный запуск тяжелого и очень тяжелого оборудования. Обычные устройства плавного пуска не всегда справляются с этой задачей.

Ценовая политика

Контроллеры-оптимизаторы являются эффективным средством увеличения КПД оборудования и в то же время они значительно более доступны по цене, чем преобразователи. По сравнению со своими аналогами, устройства от отечественных производителей обладают ценовым преимуществом: устройство мощностью 90 кВт можно приобрести по цене от 90 до 140 тысяч рублей.

Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.

Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.

Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.

Выбираем наилучший вариант для повышения КПД

Для того чтобы повысить КПД двигателя того или иного электропривода, необходимо выбрать соответствующее устройство, учитывая особенности работы оборудования.

Если требуется изменение скорости привода, то оптимальным решением будет покупка преобразователя частоты. В случае, если скорость вращения двигателя не требуется изменять или это делать неохота, то лучше выбрать контроллеры-оптимизаторы.

Более доступная стоимость данных устройств - это их главное преимущество по сравнению с «частотниками».

На заметку: Как повысить КПД электродвигателя

КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.

Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.

Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.

В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.

Чтобы повысить эффективность работы электродвигателя, можно применять частотные преобразователи для асинхронных двигателей. В результате применения данного устройства происходит трансформация однофазного или трехфазного напряжения с частотой 50 Гц в напряжение, которое имеет необходимую частоту (обычно от 1 Гц до 300–400 Гц, но иногда и до 3000 Гц) и определенную амплитуду.

Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.

Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».

Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.

Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.

Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.

Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.

Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.

Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.

При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.

Запись о стоимости «частотников»

В настоящее время, по словам финансистов, стоимость «частотников» нестабильна: за последние полтора года цены значительно увеличились. Это обусловлено не только колебаниями валютного курса, но и другими факторами. Например, частотные преобразователи производства России и зарубежных стран мощностью 90 кВт стояли примерно от 200 до 700 тысяч рублей для покупателей в 2021 году.

Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.

Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.

Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.

Контроллеры-оптимизаторы: устройства для плавного пуска

Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.

Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.

Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.

Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы электродвигателя являются регуляторами напряжения питания, которые контролируют фазы тока и напряжения. Они гарантируют полное управление приводом на всех стадиях работы и предотвращают повышенное и пониженное напряжение, перегрузку, обрывы или нарушение чередования фаз. Путем изменения напряжения питания двигателя, контроллеры-оптимизаторы согласовывают значение механического момента, который развивает электродвигатель, с значением механического момента нагрузки на его валу. Последнее позволяет увеличить коэффициент мощности, а скорость вращения ротора электродвигателя остается неизменной.

Данное оборудование является самодостаточным и дополнительных устройств не требует. Кроме того, контроллер-оптимизатор обеспечивает прекращение отбора мощности во время динамической нагрузки, когда тиристоры закрыты и не проводят электрический ток. Управляющие импульсы открывают тиристоры при поступлении и закрывают переход тока через ноль. Отметим, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *